预测分析培训

预测分析培训

Predictive Analytics培训,预测分析培训

预测分析大纲

ID 名字 期限 概览
83626 From Data to Decision with Big Data and Predictive Analytics 21小时 Audience If you try to make sense out of the data you have access to or want to analyse unstructured data available on the net (like Twitter, Linked in, etc...) this course is for you. It is mostly aimed at decision makers and people who need to choose what data is worth collecting and what is worth analyzing. It is not aimed at people configuring the solution, those people will benefit from the big picture though. Delivery Mode During the course delegates will be presented with working examples of mostly open source technologies. Short lectures will be followed by presentation and simple exercises by the participants Content and Software used All software used is updated each time the course is run so we check the newest versions possible. It covers the process from obtaining, formatting, processing and analysing the data, to explain how to automate decision making process with machine learning. Quick Overview Data Sources Minding Data Recommender systems Target Marketing Datatypes Structured vs unstructured Static vs streamed Attitudinal, behavioural and demographic data Data-driven vs user-driven analytics data validity Volume, velocity and variety of data Models Building models Statistical Models Machine learning Data Classification Clustering kGroups, k-means, nearest neighbours Ant colonies, birds flocking Predictive Models Decision trees Support vector machine Naive Bayes classification Neural networks Markov Model Regression Ensemble methods ROI Benefit/Cost ratio Cost of software Cost of development Potential benefits Building Models Data Preparation (MapReduce) Data cleansing Choosing methods Developing model Testing Model Model evaluation Model deployment and integration Overview of Open Source and commercial software Selection of R-project package Python libraries Hadoop and Mahout Selected Apache projects related to Big Data and Analytics Selected commercial solution Integration with existing software and data sources
83730 Apache Mahout for Developers 14小时 Audience Developers involved in projects that use machine learning with Apache Mahout. Format Hands on introduction to machine learning. The course is delivered in a lab format based on real world practical use cases. Implementing Recommendation Systems with Mahout Introduction to recommender systems Representing recommender data Making recommendation Optimizing recommendation Clustering Basics of clustering Data representation Clustering algorithms Clustering quality improvements Optimizing clustering implementation Application of clustering in real world Classification Basics of classification Classifier training Classifier quality improvements
83729 Applied Machine Learning 14小时 This training course is for people that would like to apply Machine Learning in practical applications. Audience This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work. Sector specific examples are used to make the training relevant to the audience. Naive Bayes Multinomial models Bayesian categorical data analysis Discriminant analysis Linear regression Logistic regression GLM EM Algorithm Mixed Models Additive Models Classification KNN Bayesian Graphical Models Factor Analysis (FA) Principal Component Analysis (PCA) Independent Component Analysis (ICA) Support Vector Machines (SVM) for regression and classification Boosting Ensemble models Neural networks Hidden Markov Models (HMM) Space State Models Clustering
84556 Programming with Big Data in R 21小时 Introduction to Programming Big Data with R (bpdR) Setting up your environment to use pbdR Scope and tools available in pbdR Packages commonly used with Big Data alongside pbdR Message Passing Interface (MPI) Using pbdR MPI 5 Parallel processing Point-to-point communication Send Matrices Summing Matrices Collective communication Summing Matrices with Reduce Scatter / Gather Other MPI communications Distributed Matrices Creating a distributed diagonal matrix SVD of a distributed matrix Building a distributed matrix in parallel Statistics Applications Monte Carlo Integration Reading Datasets Reading on all processes Broadcasting from one process Reading partitioned data Distributed Regression Distributed Bootstrap

促销课程

课程 地址 日期 价格【远程/传统课堂】
Drupal Theming BeiJing DongZhiMen YinZuo (Ginza) 星期四, 2016-12-29 18:00 ¥9385 / ¥10385

近期课程

预测分析,培训,课程,培训课程, 预测分析课程, 预测分析老师,短期预测分析培训,企业预测分析培训, 预测分析辅导班, 预测分析远程教育 ,预测分析s辅导,预测分析讲师, 预测分析教程, 一对一预测分析课程, 预测分析私教, 学习预测分析 , 预测分析周末培训,预测分析晚上培训, 小组预测分析课程, 预测分析培训师, 学预测分析班

我们的客户