Natural Language Processing with Deep Dive in Python and NLTK培训

课程编码

python_nlp

Duration

35 hours 通常来说是5天,包括中间休息。

要求

There are no specific requirements needed to attend this course.

Overview

在培训结束时,代表们应该充分配备必要的python概念,并且应该能够充分利用NLTK来实现大多数基于NLP和ML的操作。培训的目的不仅是提供执行知识,还提供其中技术的逻辑和操作知识。

Machine Translated

课程大纲

Introduction to Python

Introduction

1 - Installing Python

2 - Numbers

3 - Strings

4 - Slicing up Strings

5 - Lists

6 - Installing PyCharm

 

Conditional Statements

7 - if elif else

 

Iterations

8 - for

9 - Range and While

10 - Comments and Break

11 - Continue

 

Functions

12 - Functions

13 - Return Values

14 - Default Values for Arguments

15 - Variable Scope

16 - Keyword Arguments

17 - Flexible Number of Arguments

18 - Unpacking Arguments

19 - My trip to Walmart and Sets

20 - Dictionary

21 - Modules

 

Playing with Requests and Files

22 - Download an Image from the Web

23 - How to Read and Write Files

24 - Downloading Files from the Web

 

Exceptions

28 - Exceptions

 

Object Oriented Programs

29 - Classes and Objects

30 - init

31 - Class vs Instance Variables

32 - Inheritance

33 - Multiple Inheritance

34 - threading

 

Playing around with Python

35 - Unpack List or Tuples

36 - Zip (and yeast infection story)

37 - Lamdba

38 - Min, Max, and Sorting Dictionaries

39 - Pillow

40 - Cropping Images

41 - Combine Images Together

42 - Getting Individual Channels

43 - Awesome Merge Effect

44 - Basic Transformations

45 - Modes and Filters

46 - struct

47 - map

48 - Bitwise Operators

49 - Finding Largest or Smallest Items

50 - Dictionary Calculations

51 - Finding Most Frequent Items

52 - Dictionary Multiple Key Sort

53 - Sorting Custom Objects

 

Add Ons:

 

54 - Database Connectivity and Querying for MySQL

55 - Quick look into Regular Expressions

56 - Playing around with REST API

 

Writing a Web Crawler

 

Natural Language Processing and NLTK

Introduction to NLP (examples in Python of course)

  1. Simple Text Manipulation

    1. Searching Text

    2. Counting Words

    3. Splitting Texts into Words

    4. Lexical dispersion

  2. Processing complex structures

    1. Representing text in Lists

    2. Indexing Lists

    3. Collocations

    4. Bigrams

    5. Frequency Distributions

    6. Conditionals with Words

    7. Comparing Words (startswith, endswith, islower, isalpha, etc...)

  3. Natural Language Understanding

    1. Word Sense Disambiguation

    2. Pronoun Resolution

  4. Machine translations (statistical, rule based, literal, etc...)

  5. Exercises

NLP in Python in examples

  1. Accessing Text Corpora and Lexical Resources

    1. Common sources for corpora

    2. Conditional Frequency Distributions

    3. Counting Words by Genre

    4. Creating own corpus

    5. Pronouncing Dictionary

    6. Shoebox and Toolbox Lexicons

    7. Senses and Synonyms

    8. Hierarchies

    9. Lexical Relations: Meronyms, Holonyms

    10. Semantic Similarity

  2. Processing Raw Text

    1. Priting

    2. struncating

    3. extracting parts of string

    4. accessing individual charaters

    5. searching, replacing, spliting, joining, indexing, etc...

    6. using regular expressions

    7. detecting word patterns

    8. stemming

    9. tokenization

    10. normalization of text

    11. Word Segmentation (especially in Chinese)

  3. Categorizing and Tagging Words

    1. Tagged Corpora

    2. Tagged Tokens

    3. Part-of-Speech Tagset

    4. Python Dictionaries

    5. Words to Propertieis mapping

    6. Automatic Tagging

    7. Determining the Category of a Word (Morphological, Syntactic, Semantic)

  4. Text Classification (Machine Learning)

    1. Supervised Classification

    2. Sentence Segmentation

    3. Cross Validation

    4. Decision Trees

  5. Extracting Information from Text

    1. Chunking

    2. Chinking

    3. Tags vs Trees

  6. Analyzing Sentence Structure

    1. Context Free Grammar

    2. Parsers

  7. Building Feature Based Grammars

    1. Grammatical Features

    2. Processing Feature Structures

  8. Analyzing the Meaning of Sentences

    1. Semantics and Logic

    2. Propositional Logic

    3. First-Order Logic

    4. Discourse Semantics

  9.  Managing Linguistic Data 

    1. Data Formats (Lexicon vs Text)

    2. Metadata

客户评论

★★★★★
★★★★★

促销课程

订阅促销课程

为尊重您的隐私,我公司不会把您的邮箱地址提供给任何人。您可以享有优先权和随时取消订阅的权利。

我们的客户

is growing fast!

We are looking to expand our presence in China!

As a Business Development Manager you will:

  • expand business in China
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!