预测分析培训

预测分析培训

Predictive Analytics培训,预测分析培训

客户评论

Applied Machine Learning

ref material to use later was very good

PAUL BEALES - Seagate Technology

预测分析大纲

代码 名字 期限 概览
Piwik Getting started with Piwik 21小时 Web analysist Data analysists Market researchers Marketing and sales professionals System administrators Format of course     Part lecture, part discussion, heavy hands-on practice Introduction to Piwik Why use Piwik? Piwik vs Google Analystics Setting up Piwik Selecting which websites to monitor Working with the dashboard Understanding visitor activity Actions Referrals Generating reports  
datamodeling Pattern Recognition 35小时 This course provides an introduction into the field of pattern recognition and machine learning. It also touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. The course is interactive and includes plenty of hands-on exercises, continuous feedback, and testing of knowledge and skills acquired. Audience     Data analysts     PhD students, researchers and practitioners   Introduction Probability theory, model selection, decision and information theory Probability distributions Linear models for regression and classification Neural networks Kernel methods Sparse kernel machines Graphical models Mixture models and EM Approximate inference Sampling methods Continuous latent variables Sequential data Combining models  
kdd Knowledge Discover in Databases (KDD) 21小时 Knowledge discovery in databases (KDD) is the process of discovering useful knowledge from a collection of data. Real-life applications for this data mining technique include marketing, fraud detection, telecommunication and manufacturing. In this course, we introduce the processes involved in KDD and carry out a series of exercises to practice the implementation of those processes. Audience     Data analysts or anyone interested in learning how to interpret data to solve problems Format of the course     After a theoretical discussion of KDD, the instructor will present real-life cases which call for the application of KDD to solve a problem. Participants will prepare, select and cleanse sample data sets and use their prior knowledge about the data to propose solutions based on the results of their observations. Introduction     KDD vs data mining Establishing the application domain Establishing relevant prior knowledge Understanding the goal of the investigation Creating a target data set Data cleaning and preprocessing Data reduction and projection Choosing the data mining task Choosing the data mining algorithms Interpreting the mined patterns
d2dbdpa From Data to Decision with Big Data and Predictive Analytics 21小时 Audience If you try to make sense out of the data you have access to or want to analyse unstructured data available on the net (like Twitter, Linked in, etc...) this course is for you. It is mostly aimed at decision makers and people who need to choose what data is worth collecting and what is worth analyzing. It is not aimed at people configuring the solution, those people will benefit from the big picture though. Delivery Mode During the course delegates will be presented with working examples of mostly open source technologies. Short lectures will be followed by presentation and simple exercises by the participants Content and Software used All software used is updated each time the course is run so we check the newest versions possible. It covers the process from obtaining, formatting, processing and analysing the data, to explain how to automate decision making process with machine learning. Quick Overview Data Sources Minding Data Recommender systems Target Marketing Datatypes Structured vs unstructured Static vs streamed Attitudinal, behavioural and demographic data Data-driven vs user-driven analytics data validity Volume, velocity and variety of data Models Building models Statistical Models Machine learning Data Classification Clustering kGroups, k-means, nearest neighbours Ant colonies, birds flocking Predictive Models Decision trees Support vector machine Naive Bayes classification Neural networks Markov Model Regression Ensemble methods ROI Benefit/Cost ratio Cost of software Cost of development Potential benefits Building Models Data Preparation (MapReduce) Data cleansing Choosing methods Developing model Testing Model Model evaluation Model deployment and integration Overview of Open Source and commercial software Selection of R-project package Python libraries Hadoop and Mahout Selected Apache projects related to Big Data and Analytics Selected commercial solution Integration with existing software and data sources
appliedml Applied Machine Learning 14小时 This training course is for people that would like to apply Machine Learning in practical applications. Audience This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work. Sector specific examples are used to make the training relevant to the audience. Naive Bayes Multinomial models Bayesian categorical data analysis Discriminant analysis Linear regression Logistic regression GLM EM Algorithm Mixed Models Additive Models Classification KNN Bayesian Graphical Models Factor Analysis (FA) Principal Component Analysis (PCA) Independent Component Analysis (ICA) Support Vector Machines (SVM) for regression and classification Boosting Ensemble models Neural networks Hidden Markov Models (HMM) Space State Models Clustering
apachemdev Apache Mahout for Developers 14小时 Audience Developers involved in projects that use machine learning with Apache Mahout. Format Hands on introduction to machine learning. The course is delivered in a lab format based on real world practical use cases. Implementing Recommendation Systems with Mahout Introduction to recommender systems Representing recommender data Making recommendation Optimizing recommendation Clustering Basics of clustering Data representation Clustering algorithms Clustering quality improvements Optimizing clustering implementation Application of clustering in real world Classification Basics of classification Classifier training Classifier quality improvements
bigdatar Programming with Big Data in R 21小时 Introduction to Programming Big Data with R (bpdR) Setting up your environment to use pbdR Scope and tools available in pbdR Packages commonly used with Big Data alongside pbdR Message Passing Interface (MPI) Using pbdR MPI 5 Parallel processing Point-to-point communication Send Matrices Summing Matrices Collective communication Summing Matrices with Reduce Scatter / Gather Other MPI communications Distributed Matrices Creating a distributed diagonal matrix SVD of a distributed matrix Building a distributed matrix in parallel Statistics Applications Monte Carlo Integration Reading Datasets Reading on all processes Broadcasting from one process Reading partitioned data Distributed Regression Distributed Bootstrap

近期课程

课程日期价格【远程 / 传统课堂】
From Data to Decision with Big Data and Predictive Analytics - 北京 - 侨福芳草地星期一, 2017-07-10 09:30¥51650 / ¥55850
Applied Machine Learning - 香港 - 中環中心星期四, 2017-07-13 09:30¥17880 / ¥27880

其它地区

预测分析,培训,课程,培训课程, 预测分析老师,短期预测分析培训,预测分析训练,学预测分析班,企业预测分析培训,预测分析s辅导,预测分析课程,小组预测分析课程,预测分析周末培训,预测分析教程,预测分析辅导班,预测分析晚上培训,预测分析私教,一对一预测分析课程,预测分析远程教育,预测分析培训师,学习预测分析

促销课程

订阅促销课程

为尊重您的隐私,我公司不会把您的邮箱地址提供给任何人。您可以享有优先权和随时取消订阅的权利。

我们的客户