Statistical Thinking for Decision Makers Training Course
This course has been created for decision makers whose primary goal is not to do the calculation and the analysis, but to understand them and be able to choose what kind of statistical methods are relevant in strategic planning of the organization.
For example, a prospect participant needs to make decision how many samples needs to be collected before they can make the decision whether the product is going to be launched or not.
If you need longer course which covers the very basics of statistical thinking have a look at 5 day "Statistics for Managers" training.
Course Outline
What statistics can offer to Decision Makers
- Descriptive Statistics
- Basic statistics - which of the statistics (e.g. median, average, percentiles etc...) are more relevant to different distributions
- Graphs - significance of getting it right (e.g. how the way the graph is created reflects the decision)
- Variable types - what variables are easier to deal with
- Ceteris paribus, things are always in motion
- Third variable problem - how to find the real influencer
- Inferential Statistics
- Probability value - what is the meaning of P-value
- Repeated experiment - how to interpret repeated experiment results
- Data collection - you can minimize bias, but not get rid of it
- Understanding confidence level
Statistical Thinking
- Decision making with limited information
- how to check how much information is enough
- prioritizing goals based on probability and potential return (benefit/cost ratio ration, decision trees)
- How errors add up
- Butterfly effect
- Black swans
- What is Schrödinger's cat and what is Newton's Apple in business
- Cassandra Problem - how to measure a forecast if the course of action has changed
- Google Flu trends - how it went wrong
- How decisions make forecast outdated
- Forecasting - methods and practicality
- ARIMA
- Why naive forecasts are usually more responsive
- How far a forecast should look into the past?
- Why more data can mean worse forecast?
Statistical Methods useful for Decision Makers
- Describing Bivariate Data
- Univariate data and bivariate data
- Probability
- why things differ each time we measure them?
- Normal Distributions and normally distributed errors
- Estimation
- Independent sources of information and degrees of freedom
- Logic of Hypothesis Testing
- What can be proven, and why it is always the opposite what we want (Falsification)
- Interpreting the results of Hypothesis Testing
- Testing Means
- Power
- How to determine a good (and cheap) sample size
- False positive and false negative and why it is always a trade-off
Requirements
Good maths skills are required. Exposure to basic statistics (i.e. working with people who do the statistical analysis) is required.
Need help picking the right course?
china@nobleprog.com or 400 6116 540
Statistical Thinking for Decision Makers Training Course - Enquiry
Statistical Thinking for Decision Makers - Consultancy Enquiry
Consultancy Enquiry
Testimonials (5)
The variation with exercise and showing.
Ida Sjoberg - Swedish National Debt Office
Course - Econometrics: Eviews and Risk Simulator
the trainer had patience, and was eager to make sure we all understood the topics, the classes were fun to attend
Mamonyane Taoana - Road Safety Department
Course - Statistical Analysis using SPSS
The pace was just right and the relaxed atmosphere made candidates feel at ease to ask questions.
Rhian Hughes - Public Health Wales NHS Trust
Course - Introduction to Data Visualization with Tidyverse and R
Michael the trainer is very knowledgeable and skillful about the subject of Big Data and R. He is very flexible and quickly customize the training meeting clients' need. He is also very capable to solve technical and subject matter problems on the go. Fantastic and professional training!.
Xiaoyuan Geng - Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course - Programming with Big Data in R
I enjoyed the Excel sheets provided having the exercises with examples. This meant that if Tamil was held up helping other people, I could crack on with the next parts.
Luke Pontin
Course - Data and Analytics - from the ground up
Upcoming Courses
Related Courses
Algorithmic Trading with Python and R
14 HoursThis instructor-led, live training in China (online or onsite) is aimed at business analysts who wish to automate trade with algorithmic trading, Python, and R.
By the end of this training, participants will be able to:
- Employ algorithms to buy and sell securities at specialized increments rapidly.
- Reduce costs associated with trade using algorithmic trading.
- Automatically monitor stock prices and place trades.
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
Introductory R (Basic to Intermediate)
14 HoursThis instructor-led, live training in China (online or onsite) is aimed at beginner-level data analysts who wish to use R programming to manipulate data, perform basic data analysis, and create compelling visualizations for insights.
By the end of this training, participants will be able to:
- Understand the basics of R Programming.
- Apply fundamental data science processes.
- Create visual representations of data.
Cluster Analysis with R and SAS
14 HoursThis instructor-led, live training in China (online or onsite) is aimed at data analysts who wish to program with R in SAS for cluster analysis.
By the end of this training, participants will be able to:
- Use cluster analysis for data mining
- Master R syntax for clustering solutions.
- Implement hierarchical and non-hierarchical clustering.
- Make data-driven decisions to help to improve business operations.
Data and Analytics - from the ground up
42 HoursData analytics is a crucial tool in business today. We will focus throughout on developing skills for practical hands on data analysis. The aim is to help delegates to give evidence-based answers to questions:
What has happened?
- processing and analyzing data
- producing informative data visualizations
What will happen?
- forecasting future performance
- evaluating forecasts
What should happen?
- turning data into evidence-based business decisions
- optimizing processes
The course itself can be delivered either as a 6 day classroom course or remotely over a period of weeks if preferred. We can work with you to deliver the course to best suit your needs.
Data Analysis with Python, R, Power Query, and Power BI
21 HoursThis instructor-led, live training in China (online or onsite) is aimed at beginner-level professionals who wish to clean and analyze data, make statistical projections, and create insightful visualizations using these tools.
By the end of this training, participants will be able to:
- Understand the basics of Python, R, Power Query, and Power BI for data analysis.
- Clean and organize datasets using Python and Power Query.
- Perform statistical analysis and projections with R.
- Create professional dashboards and reports with Power BI.
- Integrate and analyze data from multiple sources effectively.
Data Analytics With R
21 HoursR is a very popular, open source environment for statistical computing, data analytics and graphics. This course introduces R programming language to students. It covers language fundamentals, libraries and advanced concepts. Advanced data analytics and graphing with real world data.
Audience
Developers / data analytics
Duration
3 days
Format
Lectures and Hands-on
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Data Mining & Machine Learning with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Econometrics: Eviews and Risk Simulator
21 HoursThis instructor-led, live training in China (online or onsite) is aimed at anyone who wishes to learn and master the fundamentals of econometric analysis and modeling.
By the end of this training, participants will be able to:
- Learn and understand the fundamentals of econometrics.
- Utilize Eviews and risk simulators.
HR Analytics for Public Organisations
14 HoursThis instructor-led, live training (online or onsite) is aimed at HR professionals who wish to use analytical methods improve organisational performance. This course covers qualitative as well as quantitative, empirical and statistical approaches.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Statistical Analysis using SPSS
21 HoursThis instructor-led, live training in China (online or onsite) is aimed at beginner-level to intermediate-level professionals who wish to perform statistical analysis using SPSS to interpret data accurately, run complex statistical tests, and generate meaningful insights.
By the end of this training, participants will be able to:
- Navigate the SPSS interface and manage datasets efficiently.
- Perform descriptive and inferential statistical analyses.
- Conduct t-tests, ANOVA, MANOVA, regression, and correlation analyses.
- Apply non-parametric tests, principal component analysis, and factor analysis for advanced data interpretation.
Talent Acquisition Analytics
14 HoursThis instructor-led, live training (online or onsite) is aimed at HR professionals and recruitment specialists who wish to use analytical methods improve organisational performance. This course covers qualitative as well as quantitative, empirical and statistical approaches.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice