Kubeflow on AWS培训

课程编码

kubeflowaws

课程时长

28 小时 通常来说是4天,包括中间休息。

要求

  • An understanding of machine learning concepts.
  • Knowledge of cloud computing concepts.
  • A general understanding of containers (Docker) and orchestration (Kubernetes).
  • Some Python programming experience is helpful.
  • Experience working with a command line.

Audience

  • Data science engineers.
  • DevOps engineers interesting in machine learning model deployment.
  • Infrastructure engineers interesting in machine learning model deployment.
  • Software engineers wishing to integrate and deploy machine learning features with their application.

课程概览

Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is a machine learning library and Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.

By the end of this training, participants will be able to:

  • Install and configure Kubernetes, Kubeflow and other needed software on AWS.
  • Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
  • Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
  • Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
  • Leverage other AWS managed services to extend an ML application.

Format of the Course

  • Interactive lecture and discussion.
  • Lots of exercises and practice.
  • Hands-on implementation in a live-lab environment.

Course Customization Options

  • To request a customized training for this course, please contact us to arrange.

课程大纲

Introduction

  • Kubeflow on AWS vs on-premise vs on other public cloud providers

Overview of Kubeflow Features and Architecture

Activating an AWS Account

Preparing and Launching GPU-enabled AWS Instances

Setting up User Roles and Permissions

Preparing the Build Environment

Selecting a TensorFlow Model and Dataset

Packaging Code and Frameworks into a Docker Image

Setting up a Kubernetes Cluster Using EKS

Staging the Training and Validation Data

Configuring Kubeflow Pipelines

Launching a Training Job using Kubeflow in EKS

Visualizing the Training Job in Runtime

Cleaning up After the Job Completes

Troubleshooting

Summary and Conclusion

客户评论

★★★★★
★★★★★

课程分类

相关课程

促销课程

订阅促销课程

为尊重您的隐私,我公司不会把您的邮箱地址提供给任何人。您可以享有优先权和随时取消订阅的权利。

我们的客户

is growing fast!

We are looking to expand our presence in China!

As a Business Development Manager you will:

  • expand business in China
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

该网站在其他国家/地区