课程大纲
介绍
MLOps 概述
- 什么是MLOps?
- MLOps 在 Azure Machine Learning 体系结构中
准备 MLOps 环境
- 设置 Azure Machine Learning
模型再现性
- 使用 Azure Machine Learning 管道
- 将 Machine Learning 流程与管道桥接
容器和部署
- 将模型打包到容器中
- 部署容器
- 验证模型
自动化操作
- 使用 Azure、Machine Learning 和 GitHub 自动执行操作
- 重新训练和测试模型
- 推出新型号
Go监管与控制
- 创建审计跟踪
- 管理和监视模型
总结和结论
要求
- 经验 Azure Machine Learning
观众
- 数据科学家
客户评论 (5)
I've got to try out resources that I've never used before.
Daniel - INIT GmbH
课程 - Architecting Microsoft Azure Solutions
非常友好和乐于助人
Aktar Hossain - Unit4
课程 - Building Microservices with Microsoft Azure Service Fabric (ASF)
机器翻译
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
The practical part, I was able to perform exercises and to test the Microsoft Azure features
Alex Bela - Continental Automotive Romania SRL
课程 - Programming for IoT with Azure
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.