课程大纲
介绍
MLOps概述
- 什么是MLOps?
- Azure Machine Learning架构中的MLOps
准备MLOps环境
- 设置Azure Machine Learning
模型可重复性
- 使用Azure Machine Learning管道
- 通过管道桥接机器学习流程
容器与部署
- 将模型打包到容器中
- 部署容器
- 验证模型
自动化操作
- 使用Azure Machine Learning和GitHub自动化操作
- 重新训练和测试模型
- 推出新模型
治理与控制
- 创建审计跟踪
- 管理和监控模型
总结与结论
要求
- 具备Azure Machine Learning经验
受众
- 数据科学家
客户评论 (5)
I've got to try out resources that I've never used before.
Daniel - INIT GmbH
课程 - Architecting Microsoft Azure Solutions
非常友好和乐于助人
Aktar Hossain - Unit4
课程 - Building Microservices with Microsoft Azure Service Fabric (ASF)
机器翻译
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
The practical part, I was able to perform exercises and to test the Microsoft Azure features
Alex Bela - Continental Automotive Romania SRL
课程 - Programming for IoT with Azure
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.