课程大纲
MLOps容器化基础
- 理解ML生命周期需求
- ML系统的关键Docker概念
- 可重复环境的最佳实践
构建容器化ML训练管道
- 打包模型训练代码和依赖项
- 使用Docker镜像配置训练任务
- 管理容器中的数据集和工件
容器化验证和模型评估
- 重现评估环境
- 自动化验证工作流程
- 从容器中捕获指标和日志
容器化推理和服务
- 设计推理微服务
- 优化生产环境的运行时容器
- 实现可扩展的服务架构
使用Docker Compose编排管道
- 协调多容器ML工作流程
- 环境隔离和配置管理
- 集成支持服务(如跟踪、存储)
ML模型版本控制和生命周期管理
- 跟踪模型、镜像和管道组件
- 版本控制的容器环境
- 集成MLflow或类似工具
部署和扩展ML工作负载
- 在分布式环境中运行管道
- 使用Docker原生方法扩展微服务
- 监控容器化ML系统
使用Docker进行MLOps的CI/CD
- 自动化ML组件的构建和部署
- 在容器化测试环境中测试管道
- 确保可重复性和回滚
总结与下一步
要求
- 了解机器学习工作流程
- 具备使用Python进行数据或模型开发的经验
- 熟悉容器的基础知识
受众
- MLOps工程师
- DevOps从业者
- 数据平台团队
客户评论 (5)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
课程 - Kubeflow
It gave a good grounding for Docker and Kubernetes.
Stephen Dowdeswell - Global Knowledge Networks UK
课程 - Docker (introducing Kubernetes)
I generally liked the trainer knowledge and enthusiasm.
Ruben Ortega
课程 - Docker and Kubernetes
I generally enjoyed the content was interesting.