CANN for Edge AI Deployment 培训
Huawei's Ascend CANN toolkit enables powerful AI inference on edge devices such as the Ascend 310. CANN provides essential tools for compiling, optimizing, and deploying models where compute and memory are constrained.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and integrators who wish to deploy and optimize models on Ascend edge devices using the CANN toolchain.
By the end of this training, participants will be able to:
- Prepare and convert AI models for Ascend 310 using CANN tools.
- Build lightweight inference pipelines using MindSpore Lite and AscendCL.
- Optimize model performance for limited compute and memory environments.
- Deploy and monitor AI applications in real-world edge use cases.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work with edge-specific models and scenarios.
- Live deployment examples on virtual or physical edge hardware.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
课程大纲
Introduction to Edge AI and Ascend 310
- Overview of Edge AI: trends, constraints, and applications
- Huawei Ascend 310 chip architecture and supported toolchain
- Positioning CANN within the edge AI deployment stack
Model Preparation and Conversion
- Exporting trained models from TensorFlow, PyTorch, and MindSpore
- Using ATC to convert models to OM format for Ascend devices
- Handling unsupported ops and lightweight conversion strategies
Developing Inference Pipelines with AscendCL
- Using the AscendCL API to run OM models on Ascend 310
- Input/output preprocessing, memory handling, and device control
- Deploying within embedded containers or lightweight runtime environments
Optimization for Edge Constraints
- Reducing model size, precision tuning (FP16, INT8)
- Using the CANN profiler to identify bottlenecks
- Managing memory layout and data streaming for performance
Deploying with MindSpore Lite
- Using MindSpore Lite runtime for mobile and embedded targets
- Comparing MindSpore Lite with raw AscendCL pipeline
- Packaging inference models for device-specific deployment
Edge Deployment Scenarios and Case Studies
- Case study: smart camera with object detection model on Ascend 310
- Case study: real-time classification in an IoT sensor hub
- Monitoring and updating deployed models at the edge
Summary and Next Steps
要求
- Experience with AI model development or deployment workflows
- Basic knowledge of embedded systems, Linux, and Python
- Familiarity with deep learning frameworks such as TensorFlow or PyTorch
Audience
- IoT solution developers
- Embedded AI engineers
- Edge system integrators and AI deployment specialists
需要帮助选择合适的课程吗?
CANN for Edge AI Deployment 培训 - Enquiry
CANN for Edge AI Deployment - 问询
问询
即将举行的公开课程
相关课程
Advanced Edge AI Techniques
14 小时这种以讲师为主导的 中国(在线或现场)现场培训面向希望掌握边缘 AI 最新进展、优化其 AI 模型以进行边缘部署并探索跨各个行业的专业应用的高级 AI 从业者、研究人员和开发人员。
在培训结束时,参与者将能够:
- 探索边缘 AI 模型开发和优化中的高级技术。
- 实施在边缘设备上部署 AI 模型的尖端策略。
- 将专用工具和框架用于高级边缘 AI 应用程序。
- 优化边缘 AI 解决方案的性能和效率。
- 探索边缘 AI 的创新用例和新兴趋势。
- 解决边缘 AI 部署中的高级道德和安全注意事项。
Developing AI Applications with Huawei Ascend and CANN
21 小时Huawei Ascend is a family of AI processors designed for high-performance inference and training.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI engineers and data scientists who wish to develop and optimize neural network models using Huawei’s Ascend platform and the CANN toolkit.
By the end of this training, participants will be able to:
- Set up and configure the CANN development environment.
- Develop AI applications using MindSpore and CloudMatrix workflows.
- Optimize performance on Ascend NPUs using custom operators and tiling.
- Deploy models to edge or cloud environments.
Format of the Course
- Interactive lecture and discussion.
- Hands-on use of Huawei Ascend and CANN toolkit in sample applications.
- Guided exercises focused on model building, training, and deployment.
Course Customization Options
- To request a customized training for this course based on your infrastructure or datasets, please contact us to arrange.
Deploying AI Models with CANN and Ascend AI Processors
14 小时CANN (Compute Architecture for Neural Networks) is Huawei’s AI compute stack for deploying and optimizing AI models on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and engineers who wish to deploy trained AI models efficiently to Huawei Ascend hardware using the CANN toolkit and tools such as MindSpore, TensorFlow, or PyTorch.
By the end of this training, participants will be able to:
- Understand the CANN architecture and its role in the AI deployment pipeline.
- Convert and adapt models from popular frameworks to Ascend-compatible formats.
- Use tools like ATC, OM model conversion, and MindSpore for edge and cloud inference.
- Diagnose deployment issues and optimize performance on Ascend hardware.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work using CANN tools and Ascend simulators or devices.
- Practical deployment scenarios based on real-world AI models.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building AI Solutions on the Edge
14 小时这种以讲师为主导的 中国(在线或现场)现场培训面向希望获得在边缘设备上为各种应用程序部署 AI 模型的实用技能的中级开发人员、数据科学家和技术爱好者。
在培训结束时,参与者将能够:
- 了解边缘 AI 的原理及其优势。
- 设置和配置边缘计算环境。
- 开发、训练和优化用于边缘部署的 AI 模型。
- 在边缘设备上实施实用的 AI 解决方案。
- 评估和改进边缘部署模型的性能。
- 解决边缘 AI 应用程序中的道德和安全注意事项。
Introduction to CANN for AI Framework Developers
7 小时CANN (Compute Architecture for Neural Networks) is Huawei’s AI computing toolkit used to compile, optimize, and deploy AI models on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at beginner-level AI developers who wish to understand how CANN fits into the model lifecycle from training to deployment, and how it works with frameworks like MindSpore, TensorFlow, and PyTorch.
By the end of this training, participants will be able to:
- Understand the purpose and architecture of the CANN toolkit.
- Set up a development environment with CANN and MindSpore.
- Convert and deploy a simple AI model to Ascend hardware.
- Gain foundational knowledge for future CANN optimization or integration projects.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with simple model deployment.
- Step-by-step walkthrough of the CANN toolchain and integration points.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Understanding Huawei’s AI Compute Stack: From CANN to MindSpore
14 小时Huawei’s AI stack — from the low-level CANN SDK to the high-level MindSpore framework — offers a tightly integrated AI development and deployment environment optimized for Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level technical professionals who wish to understand how the CANN and MindSpore components work together to support AI lifecycle management and infrastructure decisions.
By the end of this training, participants will be able to:
- Understand the layered architecture of Huawei’s AI compute stack.
- Identify how CANN supports model optimization and hardware-level deployment.
- Evaluate the MindSpore framework and toolchain in relation to industry alternatives.
- Position Huawei's AI stack within enterprise or cloud/on-prem environments.
Format of the Course
- Interactive lecture and discussion.
- Live system demos and case-based walkthroughs.
- Optional guided labs on model flow from MindSpore to CANN.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Optimizing Neural Network Performance with CANN SDK
14 小时CANN SDK (Compute Architecture for Neural Networks) is Huawei’s AI compute foundation that allows developers to fine-tune and optimize the performance of deployed neural networks on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI developers and system engineers who wish to optimize inference performance using CANN’s advanced toolset, including the Graph Engine, TIK, and custom operator development.
By the end of this training, participants will be able to:
- Understand CANN's runtime architecture and performance lifecycle.
- Use profiling tools and Graph Engine for performance analysis and optimization.
- Create and optimize custom operators using TIK and TVM.
- Resolve memory bottlenecks and improve model throughput.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with real-time profiling and operator tuning.
- Optimization exercises using edge-case deployment examples.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
CANN SDK for Computer Vision and NLP Pipelines
14 小时The CANN SDK (Compute Architecture for Neural Networks) provides powerful deployment and optimization tools for real-time AI applications in computer vision and NLP, especially on Huawei Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI practitioners who wish to build, deploy, and optimize vision and language models using the CANN SDK for production use cases.
By the end of this training, participants will be able to:
- Deploy and optimize CV and NLP models using CANN and AscendCL.
- Use CANN tools to convert models and integrate them into live pipelines.
- Optimize inference performance for tasks like detection, classification, and sentiment analysis.
- Build real-time CV/NLP pipelines for edge or cloud-based deployment scenarios.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab with model deployment and performance profiling.
- Live pipeline design using real CV and NLP use cases.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Custom AI Operators with CANN TIK and TVM
14 小时CANN TIK (Tensor Instruction Kernel) and Apache TVM enable advanced optimization and customization of AI model operators for Huawei Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at advanced-level system developers who wish to build, deploy, and tune custom operators for AI models using CANN’s TIK programming model and TVM compiler integration.
By the end of this training, participants will be able to:
- Write and test custom AI operators using the TIK DSL for Ascend processors.
- Integrate custom ops into the CANN runtime and execution graph.
- Use TVM for operator scheduling, auto-tuning, and benchmarking.
- Debug and optimize instruction-level performance for custom computation patterns.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on coding of operators using TIK and TVM pipelines.
- Testing and tuning on Ascend hardware or simulators.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI in Autonomous Systems
14 小时这种由讲师指导的现场中国(在线或现场)培训面向希望利用边缘人工智能提供创新自主系统解决方案的中级机器人工程师、自动驾驶汽车开发人员和人工智能研究人员。
在培训结束时,参与者将能够:
- 了解边缘 AI 在自主系统中的作用和优势。
- 开发和部署 AI 模型,以便在边缘设备上进行实时处理。
- 在自动驾驶汽车、无人机和机器人技术中实施边缘 AI 解决方案。
- 使用 Edge AI 设计和优化控制系统。
- 解决自主 AI 应用中的道德和监管考虑。
Edge AI: From Concept to Implementation
14 小时这种由讲师指导的 中国(在线或现场)实时培训面向希望全面了解边缘 AI 从概念到实际实施(包括设置和部署)的中级开发人员和 IT 专业人员。
在培训结束时,参与者将能够:
- 了解边缘 AI 的基本概念。
- 设置和配置边缘 AI 环境。
- 开发、训练和优化边缘 AI 模型。
- 部署和管理边缘 AI 应用程序。
- 将边缘 AI 与现有系统和工作流集成。
- 解决边缘 AI 实施中的道德考虑和最佳实践。
Edge AI for Healthcare
14 小时这种以讲师为主导的中国(在线或现场)现场培训面向希望利用边缘 AI 提供创新医疗保健解决方案的中级医疗保健专业人员、生物医学工程师和 AI 开发人员。
在培训结束时,参与者将能够:
- 了解边缘 AI 在医疗保健中的作用和优势。
- 在医疗保健应用的边缘设备上开发和部署 AI 模型。
- 在可穿戴设备和诊断工具中实施边缘 AI 解决方案。
- 使用边缘 AI 设计和部署患者监护系统。
- 解决医疗保健 AI 应用程序中的道德和监管考虑因素。
Edge AI for IoT Applications
14 小时这种以讲师为主导的 中国(在线或现场)现场培训面向希望利用边缘 AI 通过智能数据处理和分析功能增强物联网应用程序的中级开发人员、系统架构师和行业专业人士。
在培训结束时,参与者将能够:
- 了解边缘 AI 的基础知识及其在物联网中的应用。
- 为 IoT 设备设置和配置边缘 AI 环境。
- 在边缘设备上为 IoT 应用程序开发和部署 AI 模型。
- 在物联网系统中实现实时数据处理和决策。
- 将边缘 AI 与各种物联网协议和平台集成。
- 解决面向物联网的边缘 AI 中的道德考量和最佳实践。
Introduction to Edge AI
14 小时这种以讲师为主导的 中国(在线或现场)现场培训面向希望了解边缘 AI 及其入门应用程序基础知识的初级开发人员和 IT 专业人员。
在培训结束时,参与者将能够:
- 了解边缘 AI 的基本概念和架构。
- 设置和配置边缘 AI 环境。
- 开发和部署简单的边缘 AI 应用程序。
- 识别并了解边缘 AI 的用例和优势。
Security and Privacy in Edge AI
14 小时这种以讲师为主导的 中国(在线或现场)现场培训面向希望保护和合乎道德地部署边缘 AI 解决方案的中级网络安全专业人员、系统管理员和 AI 伦理研究人员。
在培训结束时,参与者将能够:
- 了解边缘 AI 中的安全和隐私挑战。
- 实施保护边缘设备和数据的最佳实践。
- 制定策略以降低边缘 AI 部署中的安全风险。
- 解决道德考虑并确保遵守法规。
- 对边缘 AI 应用程序进行安全评估和审计。