This instructor-led, live training in 中国 introduces the system architectures, operating systems, networking, storage, and cryptographic issues that should be considered when designing secure embedded systems.
By the end of this course, participants will have a solid understanding of security principles, concerns, and technologies. More importantly, participants will be equipped with the techniques needed for developing safe and secure embedded software.
This training intends to introduce C++ as the common extension of C when applying object-oriented embedded system development. Since C++ encloses C, this training takes us from C to C++ in a natural way, and looks under the hood of how C++ is implemented. This is especially valuable to comprehend when applying C++ in an embedded resource limited environment. The C++ standard has recently been undergoing a major revision, a.k.a. as C++11, and a new one is on its way, C++14. This course addresses subjects brought in with these revisions that are especially useful like high performance memory management, concurrency making use of a multicore environment, and bare-metal close to the hardware programming.
GOAL/BENEFITS
The major objective of this class is that you shall be able to use C++ in a “correct way”.
Introduce C++ as an object oriented language alternative in an embedded system context
Show the similarities ‑ and differences ‑ with the C language
Comprehend different memory management strategies – especially the move semantics introduced with C++11
Look under the hood and understand what different paradigms in C++ leads to in machine code
Use templates to achieve type safe high order abstractions for bare-metal close to the hardware programming – memory mapped I/O as well as interrupts – especially the variadic templates introduced with C++11
Provide some useful design patterns especially applicable in an embedded context
A few exercises in order to practice some concepts
AUDIENCE/PARTICIPANTS
This training is aimed C++- programmers who intend to start using C++ in an embedded system context.
PREVIOUS KNOWLEDGE
The course requires basic knowledge in C++ programming, corresponding to our trainings ”C++ – Level 1” and ”C++ Level 2 – Introducing C++11”.
PRACTICAL EXERCISES
During the training you will practice the presented concepts in a number of exercises. We will use the open and free integrated development environment from Eclipse
Is C++ suitable for embedded systems such as microcontrollers and real-time-operating-systems?
Should object-oriented-programming be used in microcontrollers?
Is C++ too far removed from the hardware to be efficient?
This instructor-led, live training addresses these questions and demonstrates through discussion and practice how C++ can be used to develop embedded systems with code that is accurate, readable, and efficient. Participants put theory into practice through the creation of a sample embedded application in C++.
By the end of this training, participants will be able to:
Understand the principles of object-oriented modelling, embedded software programming and real-time programming
Produce code for embedded systems that is small, fast and safe
Avoid code bloat from templates, exceptions, and other language features
Understand the issues related to using C++ in safety-critical and real-time systems
Debug a C++ program on a target device
Audience
Developers
Designers
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
This is a two day course covering all basic principles of building Embedded linux Systems, around 60% of the entire course time is practical hands-on implementation for real world application using the same standards and tools used in industry
In this instructor-led, live training in 中国, participants will learn how to create a build system for embedded Linux based on Yocto Project.
By the end of this training, participants will be able to:
Understand the fundamental concepts behind a Yocto Project build system, including recipes, metadata, and layers.
Build a Linux image and run it under emulation.
Save time and energy building embedded Linux systems.