课程大纲

介绍

人工智能和机器学习基础

了解深度学习

  • 深度学习基本概念概述
  • 区分机器学习和深度学习
  • 深度学习应用概述

神经网络概述

  • 什么是神经网络?
  • 神经网络与回归模型
  • 了解数学基础和学习机制
  • 构造人工神经网络
  • 了解神经节点和连接
  • 处理神经元、层、输入和输出数据
  • 了解单层感知器
  • 监督学习与无监督学习之间的差异
  • 学习前馈和反馈神经网络
  • 了解正向传播和反向传播
  • 了解长期短期记忆(LSTM)
  • 在实践中探索递归神经网络
  • 在实践中探索卷积神经网络
  • 改善神经网络的学习方式

电信行业中使用的深度学习技术概述

  • 神经网络
  • 自然语言处理
  • 图像识别
  • 语音识别
  • 情绪分析

探索电信行业的深度学习案例研究

  • 通过实时网络流量分析优化路由和服务质量
  • 预测网络和设备故障、中断、需求激增等
  • 实时分析呼叫以识别欺诈行为
  • 分析客户行为以识别对新产品和服务的需求
  • 处理大量SMS消息以获取见解
  • 支持电话的语音识别
  • 实时配置SDN和虚拟网络

了解电信深度学习的好处

探索适用于Python的各种深度学习库

  • TensorFlow
  • Keras

使用TensorFlow设置Python进行深度学习

  • 安装TensorFlow Python API
  • 测试TensorFlow安装
  • 设置TensorFlow进行开发
  • 训练您的第一个TensorFlow神经网络模型

使用Keras设置Python进行深度学习

使用Keras构建简单的深度学习模型

  • 创建Keras模型
  • 了解您的数据
  • 指定您的深度学习模型
  • 编译您的模型
  • 拟合您的模型
  • 处理您的分类数据
  • 使用分类模型
  • 使用您的模型 

使用TensorFlow进行电信业深度学习

  • 准备数据
    • 下载数据
    • 准备训练数据
    • 准备测试数据
    • 缩放输入
    • 使用占位符和变量
  • 指定网络架构
  • 使用成本函数
  • 使用优化器
  • 使用初始化器
  • 拟合神经网络
  • 建立图表
    • 推断(Inference)
    • 损失(Loss)
    • 训练
  • 训练模型
    • 图(graph)
    • 会话(Session)
    • 训练循环(Train Loop)
  • 评估模型
    • 建立评估图
    • 评估输出评估
  • 大规模培训模型
  • 使用TensorBoard可视化和评估模型 

动手练习:使用Python构建深度学习的客户流失预测模型

扩展公司的能力

  • 在云中开发模型
  • 使用GPU加速深度学习
  • 将深度学习神经网络应用于计算机视觉、语音识别、文本分析

总结和结论

要求

  • Python编程经验
  • 熟悉电信行业相关概念
  • 基本熟悉统计学和数学概念

受众

  • 开发人员
  • 数据科学家
 28 小时

客户评论 (5)

即将举行的公开课程

课程分类