深度学习培训课程

深度学习培训课程

本地的,具有指导作用的现场深度学习(DL)培训课程通过实践深入学习的基础知识和应用程序进行演示,并涵盖深入机器学习,深层次学习和分层学习等主题。深度学习培训可作为“现场实时培训”或“远程实时培训”。现场实地培训可在当地客户现场进行中国或者在NobleProg公司的培训中心中国 。远程实时培训通过交互式远程桌面进行。 NobleProg您当地的培训提供商。

Machine Translated

客户评论

★★★★★
★★★★★

DL (Deep Learning)课程大纲

课程名称
课程时长
课程概览
课程名称
课程时长
课程概览
21小时
课程概览
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
21小时
课程概览
This course is general overview for Deep Learning without going too deep into any specific methods. It is suitable for people who want to start using Deep learning to enhance their accuracy of prediction.
28小时
课程概览
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks.
21小时
课程概览
Caffe is a deep learning framework made with expression, speed, and modularity in mind.

This course explores the application of Caffe as a Deep learning framework for image recognition using MNIST as an example

Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing Caffe as a framework.

After completing this course, delegates will be able to:

- understand Caffe’s structure and deployment mechanisms
- carry out installation / production environment / architecture tasks and configuration
- assess code quality, perform debugging, monitoring
- implement advanced production like training models, implementing layers and logging
21小时
课程概览
Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source) for analyzing computer images

This course provide working examples.
14小时
课程概览
This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.
21小时
课程概览
This course covers AI (emphasizing Machine Learning and Deep Learning)
14小时
课程概览
14小时
课程概览
In this instructor-led, live training, we go over the principles of neural networks and use OpenNN to implement a sample application.

Format of the course

- Lecture and discussion coupled with hands-on exercises.
7小时
课程概览
In this instructor-led, live training, participants will learn how to set up and use OpenNMT to carry out translation of various sample data sets. The course starts with an overview of neural networks as they apply to machine translation. Participants will carry out live exercises throughout the course to demonstrate their understanding of the concepts learned and get feedback from the instructor.

By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.

Source and target language samples will be pre-arranged per the audience's requirements.

Format of the Course

- Part lecture, part discussion, heavy hands-on practice
21小时
课程概览
Artificial intelligence has revolutionized a large number of economic sectors (industry, medicine, communication, etc.) after having upset many scientific fields. Nevertheless, his presentation in the major media is often a fantasy, far removed from what really are the fields of Machine Learning or Deep Learning. The aim of this course is to provide engineers who already have a master's degree in computer tools (including a software programming base) an introduction to Deep Learning as well as to its various fields of specialization and therefore to the main existing network architectures today. If the mathematical bases are recalled during the course, a level of mathematics of type BAC + 2 is recommended for more comfort. It is absolutely possible to ignore the mathematical axis in order to maintain only a "system" vision, but this approach will greatly limit your understanding of the subject.
7小时
课程概览
In this instructor-led, live training, participants will learn how to use Facebook NMT (Fairseq) to carry out translation of sample content.

By the end of this training, participants will have the knowledge and practice needed to implement a live Fairseq based machine translation solution.

Format of the course

- Part lecture, part discussion, heavy hands-on practice

Note

- If you wish to use specific source and target language content, please contact us to arrange.
21小时
课程概览
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.

In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.

By the end of this training, participants will be able to:

- Access CNTK as a library from within a Python, C#, or C++ program
- Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
- Use the CNTK model evaluation functionality from a Java program
- Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
- Scale computation capacity on CPUs, GPUs and multiple machines
- Access massive datasets using existing programming languages and algorithms

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
21小时
课程概览
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7小时
课程概览
In this instructor-led, live training, participants will learn how to use DSSTNE to build a recommendation application.

By the end of this training, participants will be able to:

- Train a recommendation model with sparse datasets as input
- Scale training and prediction models over multiple GPUs
- Spread out computation and storage in a model-parallel fashion
- Generate Amazon-like personalized product recommendations
- Deploy a production-ready application that can scale at heavy workloads

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7小时
课程概览
Tensor2Tensor (T2T) is a modular, extensible library for training AI models in different tasks, using different types of training data, for example: image recognition, translation, parsing, image captioning, and speech recognition. It is maintained by the Google Brain team.

In this instructor-led, live training, participants will learn how to prepare a deep-learning model to resolve multiple tasks.

By the end of this training, participants will be able to:

- Install tensor2tensor, select a data set, and train and evaluate an AI model
- Customize a development environment using the tools and components included in Tensor2Tensor
- Create and use a single model to concurrently learn a number of tasks from multiple domains
- Use the model to learn from tasks with a large amount of training data and apply that knowledge to tasks where data is limited
- Obtain satisfactory processing results using a single GPU

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14小时
课程概览
OpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.

In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.

By the end of this training, participants will be able to:

- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21小时
课程概览
在这一由讲师引导的现场培训中,参与者将学习Python中最相关及最尖端的机器学习技术,因为它们构建了一系列涉及图像、音乐、文本和财务数据的演示应用程序。

在本次培训结束后,参与者将能够:

- 运用用于解决复杂问题的机器学习算法和技术
- 将深度学习和半监督学习应用于涉及图像、音乐、文本和财务数据的应用程序
- 推动Python算法达到其最大潜力
- 使用例如NumPy和Theano的库和包

受众

- 开发人员
- 分析师
- 数据科学家

课程形式

- 部分讲座、部分讨论、练习和大量实操
21小时
课程概览
In this instructor-led, live training, participants will learn advanced techniques for Machine Learning with R as they step through the creation of a real-world application.

By the end of this training, participants will be able to:

- Understand and implement unsupervised learning techniques
- Apply clustering and classification to make predictions based on real world data.
- Visualize data to quicly gain insights, make decisions and further refine analysis.
- Improve the performance of a machine learning model using hyper-parameter tuning.
- Put a model into production for use in a larger application.
- Apply advanced machine learning techniques to answer questions involving social network data, big data, and more.
14小时
课程概览
在这一由讲师引导的现场培训中,参与者将学习如何使用Matlab来设计、构建、可视化用于图像识别的卷积神经网络。

在培训结束后,参与者将能够:

- 建立深度学习的模式
- 使数据分类自动化
- 使用Caffe和TensorFlow-Keras的模型
- 使用多个GPU、云或群集训练数据

受众

- 开发人员
- 工程师
- 领域专家

课程形式

- 部分讲座、部分讨论、练习和大量实操
28小时
课程概览
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to implement deep learning models for finance using R as they step through the creation of a deep learning stock price prediction model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in finance
- Use R to create deep learning models for finance
- Build their own deep learning stock price prediction model using R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28小时
课程概览
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for banking using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in banking
- Use Python, Keras, and TensorFlow to create deep learning models for banking
- Build their own deep learning credit risk model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28小时
课程概览
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to implement deep learning models for banking using R as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in banking
- Use R to create deep learning models for banking
- Build their own deep learning credit risk model using R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28小时
课程概览
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for finance using Python as they step through the creation of a deep learning stock price prediction model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in finance
- Use Python, Keras, and TensorFlow to create deep learning models for finance
- Build their own deep learning stock price prediction model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21小时
课程概览
深度强化学习是指“人工智能体”通过反复试验和奖惩来学习的能力。人工智能体旨在模仿人类直接从原始输入(如视觉)获取和构建知识的能力。为了实现强化学习,深度学习和神经网络会被用到。强化学习与机器学习不同,不依赖于有监督和无监督的学习方法。

在这一由讲师引导的现场培训中,学员将在逐步创建深度学习智能体的过程中学习深度强化学习的基础知识。

在本次培训结束后,学员将能够:

- 理解深度强化学习的基本概念,及其与机器学习的区别
- 运用先进的强化学习算法来解决实际问题
- 构建深度学习智能体

受众

- 开发人员
- 数据科学家

课程形式

- 部分讲座、部分讨论、练习和大量实操
21小时
课程概览
Introduction:

Deep learning is becoming a principal component of future product design that wants to incorporate artificial intelligence at the heart of their models. Within the next 5 to 10 years, deep learning development tools, libraries, and languages will become standard components of every software development toolkit. So far Google, Sales Force, Facebook, Amazon have been successfully using deep learning AI to boost their business. Applications ranged from automatic machine translation, image analytics, video analytics, motion analytics, generating targeted advertisement and many more.

This coursework is aimed for those organizations who want to incorporate Deep Learning as very important part of their product or service strategy. Below is the outline of the deep learning course which we can customize for different levels of employees/stakeholders in an organization.

Target Audience:

( Depending on target audience, course materials will be customized)

Executives

A general overview of AI and how it fits into corporate strategy, with breakout sessions on strategic planning, technology roadmaps, and resource allocation to ensure maximum value.

Project Managers

How to plan out an AI project, including data gathering and evaluation, data cleanup and verification, development of a proof-of-concept model, integration into business processes, and delivery across the organization.

Developers

In-depth technical trainings, with focus on neural networks and deep learning, image and video analytics (CNNs), sound and text analytics (NLP), and bringing AI into existing applications.

Salespersons

A general overview of AI and how it can satisfy customer needs, value propositions for various products and services, and how to allay fears and promote the benefits of AI.
14小时
课程概览
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
14小时
课程概览
Machine Learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep Learning is a subfield of Machine Learning which attempts to mimic the workings of the human brain in making decisions. It is trained with data in order to automatically provide solutions to problems. Deep Learning provides vast opportunities for the medical industry which is sitting on a data goldmine.

In this instructor-led, live training, participants will take part in a series of discussions, exercises and case-study analysis to understand the fundamentals of Deep Learning. The most important Deep Learning tools and techniques will be evaluated and exercises will be carried out to prepare participants for carrying out their own evaluation and implementation of Deep Learning solutions within their organizations.

By the end of this training, participants will be able to:

- Understand the fundamentals of Deep Learning
- Learn Deep Learning techniques and their applications in the industry
- Examine issues in medicine which can be solved by Deep Learning technologies
- Explore Deep Learning case studies in medicine
- Formulate a strategy for adopting the latest technologies in Deep Learning for solving problems in medicine

Audience

- Managers
- Medical professionals in leadership roles

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- To request a customized training for this course, please contact us to arrange.
28小时
课程概览
机器学习是人工智能的一个分支,指计算机可以在不被明确编程的情况下学习。

深度学习是机器学习的一个子领域,它使用基于学习数据表示和结构(例如神经网络)的方法。

Python是一种高级编程语言,以其清晰的语法和代码易读性而闻名。

在这一由讲师引导的现场培训中,学员将逐步学习如何创建深度学习信用风险模型,从而学习如何使用Python实现用于电信行业的深度学习模型。

在本次培训结束后,学员将能够:

- 了解深度学习的基本概念。
- 了解深度学习在电信行业中的应用和用途。
- 使用Python、Keras、TensorFlow创建用于电信行业的深度学习模型。
- 使用Python构建自己的深度学习客户流失预测模型。

课程形式

- 互动讲座和讨论。
- 大量练习和实操。
- 在现场实验室环境中动手实现。

课程自定义选项

- 如需本课程的定制培训,请联系我们以作安排。
14小时
课程概览
This instructor-led, live training in 中国 (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

近期Deep Learning (DL)培训课程

DL (Deep Learning),培训,课程,培训课程, 企业Deep Learning (DL)培训, 短期深度学习培训, DL (Deep Learning)课程, 深度学习周末培训, Deep Learning (DL)晚上培训, 深度学习训练, 学习DL (Deep Learning), DL (Deep Learning)老师, 学Deep Learning (DL)班, DL (Deep Learning)远程教育, 一对一Deep Learning (DL)课程, 小组DL (Deep Learning)课程, Deep Learning (DL)培训师, Deep Learning (DL)辅导班, Deep Learning (DL)教程, 深度学习私教, Deep Learning (DL)辅导, 深度学习讲师

促销课程

订阅促销课程

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

我们的客户

is growing fast!

We are looking to expand our presence in China!

As a Business Development Manager you will:

  • expand business in China
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

该网站在其他国家/地区