课程大纲
引言
- 构建有效的模式识别、分类和回归算法。
设置开发环境
- Python库
- 线上与线下编辑器
特征工程概述
- 输入和输出变量(特征)
- 特征工程的优缺点
原始数据中常见的问题类型
- 数据不干净、数据缺失等。
预处理变量
- 处理缺失数据
处理数据中的缺失值
处理分类变量
将标签转换为数字
处理分类变量中的标签
转换变量以提高预测能力
- 数值型、分类型、日期型等。
清理数据集
机器学习建模
处理数据中的异常值
- 数值型变量、分类型变量等。
总结与结论
要求
- 具备Python编程经验。
- 熟悉Numpy、Pandas和scikit-learn。
- 了解机器学习算法。
目标受众
- 开发者
- 数据科学家
- 数据分析师
客户评论 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.
