课程大纲
介绍
Machine Learning 的历史、演变和趋势
大数据在Machine Learning中的作用
用于管理的基础结构 Big Data
使用历史和实时数据来预测行为
案例研究:Machine Learning 跨行业
评估现有应用程序和功能
技能提升 Machine Learning
实现工具 Machine Learning
云与本地服务
了解数据中间后端
Data Mining 概述和分析
将 Machine Learning 与数据挖掘相结合
案例研究:部署 Intelligent Applications 为用户提供个性化体验
总结和结论
要求
- 了解数据库概念
- 软件应用程序开发经验
观众
- 开发 人员
客户评论 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.